Course Title	Research Project	
Course Code	PHY401M6	
Credit Value	06	
Hourly breakdown	Mentoring	Independent Learning
	60	540

Objectives

• Develop capability of carrying out scientific research in the field of physics for solving real word problems

Intended Learning Outcomes

- Identify a hypothesis and/or a researchable problem
- Review the relevant literature, if any
- Formulate research plan with appropriate research methodology
- Analyse the collected data
- Compile a scientific report as per the guidelines
- Defend the results and findings
- Perform scientific communication in reputed forum and/or refereed journal

Course Description

- Each student is required to carry out a research study in the field of any branch of Physics under the supervision of academic(s) of the department of Physics and/or collaborators
- Students could also pursue research studies at institutions other than the University of Jaffna. Under such circumstances, the student is assigned with more than one supervisor; internal supervisor(s) from the panel of academics at the Department of Physics and/or external supervisor(s) from the institution where the research project is carried out
- The students are expected to maintain a log book and consult the supervisor at least once in a week throughout the academic year
- After completion of the project, students should submit a soft bound copy of the project report for marking along with similarity report
- On completion of the research study, each student is required to present and defend the report in front of the panel of examiners appointed by the Senate

Learning	Laboratory / Modelling / Field work	
Methods /	Writing project report	
Activities	Presentation	
Evaluation	Laboratory Report Book/ Field work Record Book	20 %
	Research project report	50 %
	Oral presentation	20 %
	Submission of abstract/poster/paper to a scientific forum	10%

Course Title	Advanced Electromagnetism				
Course Code	PHY402M3				
Credit Value	03				
Hourly	Theory	Practical	Independent Learning		
breakdown	45	-	105		
Objectives	Explain propagation o	f electromagnetic waves i	in various environments		
	using Maxwell's equat	tions			
	Explain the generation	n and detection of electro	magnetic waves		
	 Importance of relativity 	stic offect on electromag	otic fields		
		suc effect off efectioniagi	ieuc neius		
Intended	• Apply Maxwell's equa	tions to study the propag	ation of electromagnetic		
Learning	waves in different me	dium transmission lines	and wave guides		
Outcomes	waves in unterent medium, it ansmission intes and wave guides				
	Describe different ways of generate electromagnetic waves				
	Describe the propertie	escribe the properties of Infrared, Ultra-violet, X-ray and γ radiation			
	Explain the relativistic effect on electromagnetic fields				
Contents	Maxwell's Equation and Electromagnetic Waves: Maxwell's equations,				
	Derivation of Maxwell's equations, Energy in the electromagnetic field and				
	Poynting Vector, Electromagnetic impedance of a medium, Plane waves in				
	free space and in dielectric and conducting media, Propagation of				
	electromagnetic waves the	hrough the ionosphere.			
	Interaction of Electr	omagnetic Waves wi	th Matter: Reflection,		
	Refraction, Scattering	and Absorption, Bound	ary conditions for the		
	electromagnetic field vec	ctors, Refractive index of a	a medium, Reflection and		
	transmission of electro	magnetic waves at bou	indaries, Scattering and		
	absorption of electromag	gnetic waves by solids and	l liquids.		
	Transmission lines and	l Wave Guides:			
	Propagation of signals i	n a lossless transmission	n line, Transmission line		
	terminated by a load in	mpedance, Practical type	es of transmission lines,		
	Reflections in transmissi	on lines, Standing waves	in transmission lines, the		
	input impedance				
	of a mismatched line, Los	sy lines, Propagation of w	aves between conducting		

	Planes, Wave guides, rectangular wave guides, Optical fib	ers, Power		
	transmission through wave guides.			
	Generation and Detection of Electromagnetic waves: Retarded			
	potentials, Lorentz gauge, Generation of electromagnetic waves, Hertzian			
	dipole, Radiation from moving charges, Radiation resistance of a dipole,			
	Half wave Antenna, Full wave antenna, Detection of Infrared, Ultra-violet,			
	X-ray and γ radiation.			
	Relativistic electromagnetism: Maxwell's Equations in four-	vector form,		
	Relativistic transformation of electromagnetic fields and potent	ials, Electric		
	and magnetic fields due to a moving charge, Relativistic transf	ormation of		
	current density and charge density, Retarded potentials from	n relativistic		
	standpoint.			
Teaching and	Lectures, Tutorial discussion, e-based teaching-learning, Open	Educational		
Learning	Resources, Assignments, Guided Learning			
Methods Evaluation	In-course assessments 200%			
Evaluation	End of course exemination	30% 700/		
Decommonded	End of course examination	/0%		
Recommended	• David G., Introduction to Electrodynamics, 4 Ed., Cambridge	University		
References	Press, (2017)			
	• Grant, I. S., and Phillips, W. R., Electromagnetism, 2 Ed., John Wiley &			
	Sons, (1990)			
	• Duffin, W. J., Electricity and Magnetism, 4 Ed., McGraw-Hill, (1990)			
	• Lorrain, P., Corson, D. R., and Lorrain, F., Electromagnetic Fields and			
	Waves, 3 Ed., W.H Freeman & Co, (1988)			
	• Jackson, J. D., Classical Electrodynamics, 3 Ed., John Wiley & Sons, (1998)			

Course Title	Advanced Solid-State Physics			
Course Code	PHY403M3			
Credit Value	03			
Hourly	Theory	Practical	Independent Learning	
breakdown	45	-	105	
Objectives	• Describe the type of s	symmetry present in the c	rystal	
	• Make use of XRD tech	nnique to identify crystal s	tructure	
	• Explain the origin of	the bandgap in solids		
	Provide theoretical in	nsights into magnetic prop	perties of solids,	
	semiconductors and	superconductivity		
Intended	Deduce crystal structure of a material using XRD data			
Learning	Describe bandgap for	mation		
	Compare different electron theories of solids			
	• Classify semiconductors based on the nature of the bandgap and			
	composition			
	• Discuss the formation	and biasing of a p-n junct	ion	
	Differentiate magneti	c materials based on their	response to the external	
	magnetic field			
	Apply Hund's rule to elements with different electronic configuration			
	Discuss the electrical, thermal and magnetic properties of			
	superconductors			
Contents	Crystallography: Revi	ew of crystal structur	res, crystal symmetry,	
	symmetry operations, p	oint groups, reciprocal l	attice, Bragg's law, Von	
	Laue formulation, Equiv	alence of Bragg's law and	Laue's condition, Ewald	
	construction, X-ray diff	raction experimental teo	chniques, and structure	
	factor.			
	Electron theory of Soli	ds : Review of free electro	n theory, physical origin	
	of band gaps, nearly fre	e electron theory, Bloch	theorem, Kronig-Penney	
	model, reduced, period	lic and extended zone	schemes, tight-binding	
	approximation, concept	of effective mass of electr	on, construction of fermi	
	surfaces.			

physics,			
ors, Hall			
effect, carrier injection, generation and recombination, p-n junction, light			
emitting diode (LED), solar cells.			
Magnetic properties of Solids: Different types of magnetism in solids,			
classical and quantum theories of diamagnetism and paramagnetism,			
Brillouin function, ferromagnetism, physical origin of ferromagnetism,			
tism and			
er effect,			
oe effect,			
London			
equations, London penetration length, quantization of magnetic flux,			
Josephson effect, Superconducting Quantum Interference Device (SQUID),			
Introduction to Bardeen–Cooper–Schrieffer (BCS) theory.			
ucational			
30 %			
70 %			
Sons,			
Learning,			
Learning,			
Learning, ns,			
Learning, ns,			
Learning, ns, es, 4 Ed.,			

Course Title	Nuclear Physics			
Course Code	PHY404M3			
Credit Value	03			
Hourly	Theory	Practical	Independent Learning	
breakdown	45	-	105	
Objectives	Introduce the propert	ies of nuclear forces		
	Provide knowledge of the properties of nuclei, and the relevant models			
	• Explain the principles	involved in the nuclear dec	cavs and reactions	
Intended	Describe the properti	es of strong nuclear forces		
Learning	• Estimate nuclear radi	us from mirror nuclei and a	lpha particle decays	
Outcomes	Estimate harrier height voltage of Deuteron using Schrödinger equation			
	• Evaluin the physical h	agia of the Dothe Weizer" du	yor formula	
	• Explain the physical b	asis of the Dethe-weizsa ck		
	• Estimate the nuclea	ar spin, parity, magnetic	moment and electric	
	quadrupole moment of	of nuclei using Shell model		
	• Explain the different types of radioactivity and account for their			
	occurrence			
	• Explain the basic properties of the nuclear and fusion reactors			
	• Explain the basic prop	berues of the nuclear and fu	ISION REACTORS	
	• Calculate the kinema	tics of various reactions	and decay processes by	
	relativistic calculations			
Contents	Nuclear Structure: A sur	rvey of nuclear properties.	Nuclear size and density:	
	Scattoring of fast electrons Electromagnetic methods nuclear shares			
			ethous, nuclear charge	
	distribution, distribution of nuclear matter			
	Nuclear forces: Theory	of the deuteron, Low en	nergy Neutron - Proton	
	scattering: Spin – dep	endence, Effective range	theory, Coherent and	
	Incoherent scattering	Proton - Proton Scatteri	ng Neutron - Neutron	
	Scattering, Isotropic spi	n, High energy n-p, n-n, p	o-p scattering, Exchange	
	force model			
	Nuclear models: Nucle	ear masses and binding er	nergies; The liquid drop	
	model. The comi empir	ical formula magic numb	or: Shall Madal: Cround	
	model: The semi empiri	ical formula, magic numb	er; snell Model: Ground	

	state spin and parity of nuclei, Magnetic moments; Quadra pole moments,			
	Introduction to Collective Model and Optical model.			
	Nuclear decays: Theory of nuclear decays: alpha, beta, electron capture			
	and gamma decays, allowed and forbidden transition, nuclear stability,			
	beta stability valley.			
	Nuclear reactions: Nuclear reactions: mechanisms, compound nucleus,			
	kinematics and cross section, nuclear energy levels and their			
	determination, Nuclear fission: Fission cross- section, chain	reactions,		
	control fission, moderations, thermal reactors. reactor control. fast breeder			
	reactors. Nuclear fusion: Fusion cross- section: thermo nuclear fusion.			
	magnetic field confinement, fusion reactors, hydrogen bomb. Fusion in			
	stars			
Teaching and	Lectures, Tutorial discussion, e-based teaching-learning, Open			
Learning	Educational Resources, Assignments, Guided Learning			
Methods Evaluation	In-course assessments	30%		
Lituration	End of course examination	70%		
Recommended	• Kamal, A., Nuclear Physics, Springer, (2014)			
References	• Kenneth, S. K., Introductory Nuclear Physics, John Wlley & Sons (1988)			
	• Norman, D. C., Models of the Atomic Nucleus, 2 Ed., Springer, (2010)			
	• Cottingham, W. N. and Greenwood, D. A., An Introduction to Nuclear			
	Physics, 2 Ed., Cambridge University Press, (2004)			
	• Samuel, S. M. W, Introductory Nuclear Physics, 2 Ed., John Wiley	& Sons Inc.,		
	(1998)			

Course Title	Laser Physics				
Course Code	РНҮ405М3				
Credit Value	03				
Hourly	Theory Practical Independent Learning				
breakdown	45	-	105		
Objectives	• Introduce the basic p	principle of generation and	properties of Laser		
	• Introduces high pow	ver pulsed lasers from Q sv	vitched nanosecond		
	lasers to femtosecon	d lasers			
	• Introduce different ty	ypes of modern lasers and	their applications in		
	industry, material sc	ience, medicine, telecomm	unications and		
	research				
Intended	• Describe the fundam	entals of a Laser			
Learning	• Explain the safety res	sponsibilities involved in v	vorking with lasers		
Outcomes	• Analyse the laser-ma	tter interaction			
	• Evaluate the types of laser based on their generation techniques				
	Differentiate continu	ous and pulsed laser			
	Compare the structure	re and properties of differ	ent types of laser,		
	and intended applica	tions			
Contents	Laser: Introduction, p	properties, classes, and s	safety		
	Monochromaticity, Col	nerence, Directionality, E	rightness, Polarisation,		
	Tunability, Principal components of laser, Laser classes and safety.				
	Einstein's relationship and line broadening mechanisms:				
	Interaction of matter: absorption, spontaneous and stimulated emission,				
	Einstein's coefficient and relationship, Line shape function, Natural,				
	Collision and Doppler b	roadenings			
	Laser Oscillation:				
	Absorption / Gain coeffi	icient, Population inversio	n, Threshold population,		
	Laser oscillation in Fabr	ry –Perot cavity and Prope	rties of cavity resonator,		
	Rate equation, pumpin	g power, Three- and Fou	r-level lasers and Gain		
	saturation				
	Modifying laser output	ıt:			

	Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic			
	effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and			
	Acoustic-optic effect, Non-linear effects and Harmonic generation			
	Types of Laser:			
	Ruby laser, Gas laser - CO2 laser, He-Ne Laser, Semiconductor laser, Nd-			
	YAG Laser. Quantum well laser, Dye laser and Polymer laser			
	Laser Applications:			
	Laser application in Holography, Information technology, Communication,			
	Printing, Scanning, Industry, Military, and Medical Research			
Teaching and	Lectures, Tutorial discussion, e-based teaching-learning, Open E	Educational		
Learning	Resources, Assignments, Guided Learning			
Methods				
Evaluation	In-course assessments	30%		
	End of course examination	70%		
Recommended	• William, T. S., Laser Fundamentals, 2 Ed., Cambridge Unive	rsity Press		
References	(2004)			
	• Thyagarajan, K. and Ajoy G,. Laser Fundamentals and App	lications, 2		
	Ed., Springer US (2011)			
	• Demtroder, W., Laser Spectroscopy, 4 Ed., Springer (2008).			

Course Title	Atomic and Molecular Sp	ectra		
Course Code	PHY406M3			
Credit Value	03			
Hourly	Theory	Practical	Independent Learning	
breakdown	45	-	105	
Objectives	• Introduce the approxin	nation methods used in qu	antum theory	
	• Describe main features of atomic spectra.			
	• Discuss the effect of ext	ernal electric and magnet	ic fields on the atomic	
		ter nur electric und mugnet	te neras on the atomic	
	spectra			
	• Explain the main featur	res of molecular spectra an	nd its application	
Intended	• Fynlain the nurnose of	using approximation met	nods in solving	
Learning			ious in solving	
Outcomes	Hamiltonian in Quantu	m mechanics		
	Apply appropriate appr	roximation methods to sol	ve Hamiltonians in the	
	study of atomic spectra	l		
	• Explain Stark effect Zeeman effect and Paschen Back effect splitting of			
	• Explain Stark enect, Zeeman enect and Faschen Dack enect splitting of			
	spectral lines and broadening spectral lines			
	• Discuss the features of	atomic spectra observed e	experimentally.	
	Compare the intensities	s of spectral lines of rotati	onal and vibrational	
	spectra			
	• Estimate bond length a	and rotational constant of	rigid diatomic	
	molecules			
	Estimate retational and contributed distantian accelerate of distantia			
	• Estimate rotational and	l centrifugal distortion col	nstants of diatomic	
	molecule in harmonic v	vibration-rotation		
Contents	Approximation Me	thods: Time-independ	dent non-degenerate	
	perturbation theory, Tin	me-independent degenera	ate perturbation theory,	
	The variational method	l. Time-dependent pertu	rbation theory and the	
		, inne acpendent perta	ibution theory and the	
	interaction of atoms with	i radiation.		
	Atomic Spectra: The spe	ectra of Atomic hydrogen:	Fine structure, Hyperfine	
	structure; The spectra	of Alkali metal atoms:	Quantum defects, fine	
	structuro in alkali motal	atome. The enactrum of U	alium: singlat and triplat	
	su ucture in aikali metal	atoms; The spectrum of H	enum: singlet and triplet	

	states, exchange force; Many electron Atoms: Central field approximation,		
	Atomic configuration and periodic table of elements, Coupling schemes.		
	The interaction of atomic systems with external electric fields: the stark		
	effect; The interaction of atomic systems with external magnetic fields:		
	Landau levels, the strong field Zeeman effect, the Paschen-Back effect,		
	Anomalous Zeeman effect; Broadening of Spectral lines: Broadening, due to		
	local and non-local effects.		
	Microwave Spectroscopy : The rotation of Molecules, Rotational spectra,		
	Diatomic molecules, Polyatomic molecules, Techni	ques and	
	Instrumentations.		
	Infra-red spectroscopy: The vibrating diatomic molecules, t	he diatomic	
	vibrating-rotator, the vibration of polyatomic molecules, the	influence of	
	rotation on the spectra of polyatomic molecules, Analysis by infra-red		
	techniques, Techniques and Instrumentations.		
	Raman Spectroscopy: Pure rotational Raman spectra, Vibrati	onal Raman	
	spectra, Polarization of light and the Raman effect, Structure de	termination	
	from Raman and Infra-red spectroscopy, Techniques and Instrumentations.		
	Electronic spectra of molecules: Electronic spectra of diatomic molecules,		
	Electronic structure of diatomic molecules, Electronic spectra of polyatomic		
	molecules, Techniques and Instrumentations.		
	Spin resonance spectroscopy: Spin and applied field, Nuclear Magnetic		
	Resonance spectroscopy, Electron Spin Resonance spectroscopy,		
	Techniques and Instrumentations.		
Teaching and	Lectures, Tutorial discussion, e-based teaching-learning, Open	Educational	
Learning	Resources, Assignments, Guided Learning		
Methods Evaluation	In-course assessments	2004	
Evaluation		30%	
	End of course examination	/0%	

Recommended	• Dmitry, B., Derek. F. K. and David, P. D, Atomic Physics: An Exploration
References	through Problems and Solutions, Oxford University Press, (2008)
	• Svanberg, S., Atomic and Molecular Spectroscopy, Springer, (2004)
	• Banwell, C. N., Fundamentals of Molecular Spectroscopy, 3 rd Edition,
	McGraw-Hill Book Company, (1972)
	• Brown, J. M., Molecular Spectroscopy, Oxford University Press, (1998)
	• Hollas, J. M., Modern Spectroscopy, 4 Ed., John Wiley & Sons, Ltd, (2004)
	Anatoli V. A., Atomic Spectroscopy: Introduction to the Theory of
	Hyperfine Structure, Springer, (2005)

Course Title	Particle Physics		
Course Code	PHY407M3		
Credit Value	03		
Hourly	Theory	Practical	Independent Learning
breakdown	45	-	105
Objectives	• Introduce the phys	ics of fundamental cons	tituents of matter and
	experimental techniques used in the production and detection of high		
	energy particles		
	• Introduce the particle interactions and their properties based on		
	fundamental force carriers		
Intended	Explain the historical development of particle physics		
Learning Outcomes	• Describe the working principle and applications of various types of		
	particle accelerators		
	Describe the Standard Model of particle physics		
	Discuss the types of elementary particles		
	Differentiate fermions and bosons		
	• Explain the characteristics of electromagnetic, strong, and weak		
	interactions		
	Interpret the particle interactions using Feynman diagram		
Contents	Introduction:		
	The old "elementary" particles, particle accelerators and detectors,		
	particles and anti-part	ticles, pion, muon, neutr	inos, strange particles;
	Classification of particl	es: baryons, mesons and	leptons, quark model;
	Different types of in	teraction: strong, electr	omagnetic and weak;
	Mediators, the standard	model.	
	Conservation laws: Energy and momentum	, angular momentum, Isos	pin, strangeness, parity,
	charge conjugation, time	e reversal and CPT theore	m.
	Electromagnetic inter	raction:	
	General features, exchar	nge particle, coupling cons	tant, cross section;

	Feynman diagram: First order, second order and third order processes,		
	conservation of strangeness, non-conservation of isospin, electromagnetic		
	interaction of hadrons.		
	Hadrons:		
	The baryon decuplet and octet, meson octet, baryon mass and magnetic		
	moment, mass of light mesons, positronium, quarkonium, psi and upsilon		
	mesons, OZI rule		
	Weak interaction: parity violation, helicity of neutrino and antineutrino, decay of charged		
	pions, muons and strange particles, W and Z bosons, Feynman diagram		
	representation of leptonic, semi-leptonic and non-leptonic decay		
	processes, decay of neutral kaon, strangeness oscillation, regeneration, CP		
	violation.		
	Strong interaction: Cross-section and decay rates, isospin in the two-nucleon system and pion-		
	nucleon system, baryon resonance.		
	Quark- quark interaction: The parton model, neutrino-nucleon collision and electron-positron		
	annihilation cross-section, deep inelastic electron-nucleon, neutrino-		
	nucleon scattering, electron-positron annihilation to hadrons, the quark-		
	quark interaction and potential, quark confinement, Feynman diagram		
	representation of hadronic processes.		
Teaching and	Lectures, Tutorial discussion, e-based teaching-learning, Open Educational		
Learning	Resources, Assignments, Guided Learning		
Methods			
Evaluation	In-course assessments 30%		
Pacammandad	End of course examination 70%		
References	• Donald H. Perkins, introduction to high energy physics, 4 Ed.,		
	Cambridge University Press (2000).		
	• David Griffiths, Introduction to Elementary Particles, 2 Ed., Wiley		
	(2008).		
	• Martin B.R., Shaw G., Particle Physics, 3 Ed., John Wiley & Sons (2008)		

Course Title	Introduction to Nanoscience and Nanotechnology		
Course Code	PHY408M3		
Credit Value	03		
Hourly	Lectures	Practical	Independent Learning
breakdown	45	-	105
Objectives	• Introduce the physics o	f nanomaterial and nan	odevices
	• Provide knowledge of the working principle and application of various		
	nanostructured devices		
.			
Intended	• Discuss the various phy	visical properties of nanc	omaterials
Learning	• Explain the working pr	inciple of nanostructure	ed devices
Outcomes	• Distinguish various fabrication technologies of nanomaterials and		
	devices		
	• Explain the basic concepts of quantum effects in nanoelectronic devices		
	Elucidate the principle and application of Nanobiotechnologies		
	Analyse the various potential applications of nanomaterials		
	and nanodevices		
Contents	Introduction: Definitio	n of nanoscience,	nanotechnology and
	nanomaterials, timeline and milestone of nanotechnology.		
	Nanoscience:		
	Quantum confinement v	s dimensions : Quantu	m wells, wires and dots,
	density of states vs di	nensionality, surface	area of nanostructures
	interaction at the nanoscal	e,	
	Effect of Nano-confineme	ent on Properties: The	rmal, Optical, Mechanical,
	Structural, Electrical, Chen	nical, Biological and Mag	gnetic properties, tunable
	properties by nanoscale su	irface design and their p	ootential applications.
	Nanomaterials and synth	iesis:	
	Nanomaterials: Polymers	and semiconductors at	nanoscale, Carbon based
	structures, Biomolecules	: DNA, KNA, Nanoc	omposites: Metal-metal
	nanocomposites, poly	mer-metal nano-c	composites, Ceramic
	nanocomposites.		

	Top-down and bottom-up approach of nanomaterial synthesis:		
	Theory of film growth: gas impingement, adsorption, surface diffusion,		
	surface coverage, epitaxial growth, Factors Influencing Thin Film Growth		
	Thin film fabrication techniques: Langmuir-Blodgett film deposition,		
	Electrodeposition, Self-assembly monolayer deposition, Chemical bath		
	deposition, Spray pyrolysis, Molecular Beam Epitaxy, Lithography, Metal		
	Organic Chemical Vapour Deposition, Atomic layer deposition. Synthesis of		
	nanomaterials		
	Carbon based nanostructures: Semiconducting polymers, Graphite,		
	Graphene, Carbon nanotube (CNT), single walled CNT, multiwall CNT,		
	Properties of graphene and CNT, Device application of graphene and CNT,		
	fullerene, electronic properties and application of fullerene		
	Nanoelectronics and Nanostructured devices: nanoscale MOSFETs,		
	Quantum tunneling diodes, Single electron and single molecule transistors,		
	Nanowire and thin film field effect transistors, Coulomb blockade, Kondo		
	effect in quantum systems, Polymer electronics, Introduction into		
	spintronics, Magnetic properties of nanomaterials and applications, nano-		
	electro-mechanical systems, Nanostructured solar cells, water splitting, fuel		
	cells, batteries, supercapacitors.		
	Nanobiotechnology: Functional and Structural Principles of		
	Nanobiotechnology, Nanofludics, Nanobiomachines in action,		
	Nanobiosensors, drug targeting, drug delivery, nanosurgery and other		
	biomedical applications		
Teaching and	Lectures, Tutorial discussion, e-based teaching-learning, Open E	Educational	
Learning	Resources, Assignments, Guided Learning		
Methods			
Evaluation	In-Course Assessment	30 %	
	End-of-Course Examination	70 %	
Recommended	• Edward, L. W., Nanophysics and Nanotechnology: An Intro	oduction to	
References	Modern Concepts in Nanoscience, 2 Edi., WILEY-VCH Verlag	GmbH &Co.	
	KGaA, Weinheim,(2006)		

• Tero, T. H., The Physics of Nanoelectronics, 1 Ed., Oxford University
Press, (2013)
• Karl, M. K., and Francis, D., Selected chapters on World Scientific Series
on Carbon Nanoscience, World Scientific Publishing Co Pte Ltd, (2018)
• Gabor, L. H., Tibbals, H. F., Joydeep, D., and Moore, J. J., Introduction to
Nanoscience and Nanotechnology , CRC Press, (2008)
• Frank, O., Owens and Poole, C., The Physics and Chemistry of
Nanosolids , John Willey, (2008),
• George, H., Fundamentals of nanoelectronics , Pearson (2008)

Course Title	Energy and Environmental Physics			
Course Code	РНҮ409М3			
Credit Value	03			
Hourly breakdown	Lectures Practical Independent Learning			
	45	-	105	
Objectives	• Understand the	e core physical concepts related to Environment		
	• Comprehend the problems of energy demand and explain the			
	possible contributions of renewable energy sources			
	• Introduce various types of energy resources available in the			
	environment			
Intended Learning	Describe the impacts of energy on environment			
Outcomes	• Discuss specific	Discuss specific environmental problems such as pollution, ozone		
	depletion and global warming			
	• Distinguish the renewable and non-renewable energy sources			
	• Explain the physical basis for the utilization of various energy			
	sources			
	Make assessments on different energy technologies			
	• Estimate the efficiency of an energy conversion process in the			
	environment			
	Describe the different energy storage systems			

Contents	Introduction: Sustainable energy supply, energy and the			
	environmental impact, Alternative energy sources			
	Environment: Vertical structure of atmosphere, composition,			
	greenhouse gases, atmospheric motion, solar spectrum, radiative			
	equilibrium, effective temperature of earth, greenhouse effect and			
	climate change			
	Solar energy: Solar water heating, unsheltered heaters, sheltered			
	heaters, system with separate storage, selective surfaces, evacuated			
	collectors, other uses of solar heaters; air heaters, crop driers, space			
	heat, space cooling, water desalination, Solar concentrators;			
	photovoltaic generation, solar cells thermoelectric generation			
	Wind onorgy Turbing types and terms Pasis theory Dynamic			
	matching stream tube theory Characteristics of the wind nowor			
	extraction by a turbine electrical and mechanical nower generation			
	extraction by a turbine, electrical and mechanical power generation			
	Hydropower: Principles, assessing the resource for small installations,			
	turbines, hydroelectric systems, hydraulic ram pump			
	Wave Energy : Wave motion, wave energy and power, wave patterns			
	and power extraction devices, Cause of tides, Enhancement of tides,			
	tidal flow power and tidal range power			
	Biofuels : Bio fuel classification, Biomass production for energy			
	farming, direct combustion for heat, pyrolysis, thermo chemical			
	processes; Alcoholic fermentation, anaerobic digestion for biogas,			
	agrochemical fuel extraction.			
	Nuclear energy: Nuclear fuel, Fusion and fission processes, nuclear			
	reactors, reactor types, reactor design, nuclear radiation pollution and			
	Nuclear energy: Nuclear fuel, Fusion and fission processes, nuclear reactors, reactor types, reactor design, nuclear radiation pollution and health effects.			
	Nuclear energy: Nuclear fuel, Fusion and fission processes, nuclear reactors, reactor types, reactor design, nuclear radiation pollution and health effects. Energy storage:			
	 Nuclear energy: Nuclear fuel, Fusion and fission processes, nuclear reactors, reactor types, reactor design, nuclear radiation pollution and health effects. Energy storage: Importance of energy storage, Biological storage, chemical storage, 			
	 Nuclear energy: Nuclear fuel, Fusion and fission processes, nuclear reactors, reactor types, reactor design, nuclear radiation pollution and health effects. Energy storage: Importance of energy storage, Biological storage, chemical storage, heat storage, electrical storage, fuel cells, mechanical storage and 			
	 Nuclear energy: Nuclear fuel, Fusion and fission processes, nuclear reactors, reactor types, reactor design, nuclear radiation pollution and health effects. Energy storage: Importance of energy storage, Biological storage, chemical storage, heat storage, electrical storage, fuel cells, mechanical storage and distribution of energy 			
	Nuclear energy: Nuclear fuel, Fusion and fission processes, nuclear reactors, reactor types, reactor design, nuclear radiation pollution and health effects. Energy storage: Importance of energy storage, Biological storage, chemical storage, heat storage, electrical storage, fuel cells, mechanical storage and distribution of energy			
	Nuclear energy: Nuclear fuel, Fusion and fission processes, nuclear reactors, reactor types, reactor design, nuclear radiation pollution and health effects. Energy storage: Importance of energy storage, Biological storage, chemical storage, heat storage, electrical storage, fuel cells, mechanical storage and distribution of energy			

Teaching and	Lectures, Tutorial discussion, e-based teaching-learning, Open		
Learning Methods /	Educational Resources, Assignments, Guided Learning		
Activities			
Evaluation	In-Course Assessment Examinations	30 %	
	Final Written Examination	70 %	
Recommended	• Nelson V., Introduction to Renewable Energy, Energy and the		
References	Environment series, CRC Press, (2011)		
	• Volker Q., Understanding Renewable Energy Systems, Earthscan,		
	(2005)		
	• Twidell, J., and Weir, T., Renewable energy resources, 2 Ed. , Tayler		
	and Francis, (2006)		