Course Title	Research Project	
Course Code	PHY401M6	
Credit Value	06	
Hourly	Mentoring	Independent Learning
breakdown	60	540

Objectives

• Develop capability of carrying out scientific research in the field of physics for solving real word problems

Intended Learning Outcomes

- Identify a hypothesis and/or a researchable problem
- Review the relevant literature, if any
- Formulate research plan with appropriate research methodology
- Analyse the collected data
- Compile a scientific report as per the guidelines
- Defend the results and findings
- Perform scientific communication in reputed forum and/or refereed journal

Course Description

- Each student is required to carry out a research study in the field of any branch of Physics under the supervision of academic(s) of the department of Physics and/or collaborators
- Students could also pursue research studies at institutions other than the University of Jaffna. Under such circumstances, the student is assigned with more than one supervisor; internal supervisor(s) from the panel of academics at the Department of Physics and/or external supervisor(s) from the institution where the research project is carried out
- The students are expected to maintain a log book and consult the supervisor at least once in a week throughout the academic year
- After completion of the project, students should submit a soft bound copy of the project report for marking along with similarity report
- On completion of the research study, each student is required to present and defend the report in front of the panel of examiners appointed by the Senate

Learning Methods /	Laboratory / Modelling / Field work Writing project report	
Activities	Presentation	
Evaluation	Laboratory Report Book/ Field work Record Book	20 %
	Research project report	50 %
	Oral presentation	20 %
	Submission of abstract/poster/paper to a scientific forum	10%

Course Title	Advanced Electromagn	etism			
Course Code	PHY402M3				
Credit Value	03				
Hourly	Theory Practical Independent Learning				
breakdown	45	-	105		
Objectives	using Maxwell's equationExplain the generation	of electromagnetic waves i tions n and detection of electron stic effect on electromagn	magnetic waves		
Intended Learning Outcomes	 Apply Maxwell's equations to study the propagation of electromagnetic waves in different medium, transmission lines and wave guides Describe different ways of generate electromagnetic waves Describe the properties of Infrared, Ultra-violet, X-ray and γ radiation Explain the relativistic effect on electromagnetic fields 				
Contents	 Explain the relativistic effect on electromagnetic helds Maxwell's Equation and Electromagnetic Waves: Maxwell's equations, Derivation of Maxwell's equations, Energy in the electromagnetic field and Poynting Vector, Electromagnetic impedance of a medium, Plane waves in free space and in dielectric and conducting media, Propagation of electromagnetic waves through the ionosphere. Interaction of Electromagnetic Waves with Matter: Reflection, Refraction, Scattering and Absorption, Boundary conditions for the electromagnetic field vectors, Refractive index of a medium, Reflection and transmission of electromagnetic waves by solids and liquids. Transmission lines and Wave Guides: Propagation of signals in a lossless transmission line, Transmission lines, Reflections in transmission lines, Standing waves in transmission lines, the input impedance of a mismatched line, Lossy lines, Propagation of waves between conducting Planes, Wave guides, rectangular wave guides, Optical fibers, Power transmission through wave guides. Generation and Detection of Electromagnetic waves: Retarded potentials, Lorentz gauge, Generation of electromagnetic waves, Hertzian dipole, Radiation from moving charges, Radiation resistance of a dipole, Half wave Antenna, Full wave antenna, Detection of Infrared, Ultra-violet, X-ray and y radiation. 				
Teaching and Learning Methods	Lectures, Tutorial discussion, e-based teaching-learning, Open Educational Resources, Assignments, Guided Learning				

Evaluation	In-course assessments	30%
	End of course examination	70%
Recommended	• David G., Introduction to Electrodynamics, 4 Ed., Cambridge	University
References	Press, (2017)	
	 Press, (2017) Grant, I. S., and Phillips, W. R., Electromagnetism, 2 Ed., John Wiley & Sons, (1990) Duffin, W. J., Electricity and Magnetism, 4 Ed., McGraw-Hill, (1990) Lorrain, P., Corson, D. R., and Lorrain, F., Electromagnetic Fields and Waves, 3 Ed., W.H Freeman & Co, (1988) Jackson, J. D., Classical Electrodynamics, 3 Ed., John Wiley & Sons, (1998) 	

Course Title	Advanced Solid-State P	hysics			
Course Code	PHY403M3				
Credit Value	03				
Hourly	Theory Practical Independent Learning				
breakdown	45	-	105		
Objectives		symmetry present in the c	-		
	Make use of XRD technique to identify crystal structure				
	 Explain the origin of the bandgap in solids Provide theoretical insights into magnetic properties of solids, 				
			perties of solids,		
	semiconductors and superconductivity				
Intended	Deduce crystal struct	ure of a material using XR	D data		
Learning	Describe bandgap for				
Outcomes		ctron theories of solids			
	Classify semiconduct	ors based on the natur	re of the bandgap and		
	composition				
		and biasing of a p-n junct			
		c materials based on their	response to the external		
	magnetic field	lomonto with different of	actronic configuration		
	 Apply Hund's rule to elements with different electronic configuration Discuss the electrical, thermal and magnetic properties of 				
	• Discuss the electric superconductors	ical, thermal and m	agnetic properties of		
Contents	^	ew of crystal structu	res crystal symmetry		
contents	Crystallography: Review of crystal structures, crystal symmetry, symmetry operations, point groups, reciprocal lattice, Bragg's law, Von				
	Laue formulation, Equivalence of Bragg's law and Laue's condition, Ewald				
	construction, X-ray diffraction experimental techniques, and structure				
	factor.				
	Electron theory of Solids: Review of free electron theory, physical origin				
	of band gaps, nearly free electron theory, Bloch theorem, Kronig-Penney				
	model, reduced, periodic and extended zone schemes, tight-binding				
	approximation, concept of effective mass of electron, construction of fermi				
	surfaces.	w of fundamentals of	semiconductor physics		
	Semiconductors : Review of fundamentals of semiconductor physics, carrier concentration and Fermi levels in extrinsic semiconductors, Hall				
	effect, carrier injection, generation and recombination, p-n junction, light				
	emitting diode (LED), so	-			
	Magnetic properties o	f Solids: Different types	of magnetism in solids,		
	-	theories of diamagnetis			
	-	omagnetism, physical or	0		
	Weiss exchange field, Currie–Weiss law, Hund's rule, ferromagnetism and				
	anti-ferromagnetism. Superconductivity : Introduction to superconductivity, Meissner effect,				
	-	roduction to supercondu			
		in superconductors, tw	· · · · · ·		
		etration length, quantiz			
	Josephson effect, Superconducting Quantum Interference Device (SQUID),				
		-Cooper-Schrieffer (BCS)			

Teaching and Learning Methods	Lectures, Tutorial discussion, e-based teaching-learning, Open Resources, Assignments, Guided Learning	Educational
Evaluation	In-course assessments	30 %
	End of course examination	70 %
Recommended References	 C. Kittel, Introduction to Solid State Physics, 8 Ed., John Wiley (2004) Ashcroft, N. W., and Mermin, N. D., Solid State Physics, Cengag (2011) Ali O., Elementary Solid State Physics: Principles and Applica Addison-Wesley, (1975) Donald A. N., Semiconductor Physics and devices: Basic Principles (2011) 	ge Learning, tions,

Course Title	Nuclear Physics					
Course Code	PHY404M3					
Credit Value	03					
Hourly	Theory Practical Independent Learning					
breakdown	45	-	105			
Objectives	-	ies of nuclear forces the properties of nuclei, ar involved in the nuclear de				
Intended Learning Outcomes	 Describe the properties of strong nuclear forces Estimate nuclear radius from mirror nuclei and alpha particle decays Estimate barrier height voltage of Deuteron using Schrödinger equation Explain the physical basis of the Bethe-Weizsa cker formula Estimate the nuclear spin, parity, magnetic moment and electric quadrupole moment of nuclei using Shell model Explain the different types of radioactivity and account for their occurrence Explain the basic properties of the nuclear and fusion reactors Calculate the kinematics of various reactions and decay processes by relativistic calculations 					
Contents	 Nuclear Structure: A survey of nuclear properties, Nuclear size and density: Scattering of fast electrons, Electromagnetic methods, nuclear charge distribution, distribution of nuclear matter Nuclear forces: Theory of the deuteron, Low energy Neutron - Proton scattering: Spin - dependence, Effective range theory, Coherent and Incoherent scattering. Proton - Proton Scattering, Neutron - Neutron Scattering, Isotropic spin, High energy n-p, n-n, p-p scattering, Exchange force model Nuclear models: Nuclear masses and binding energies; The liquid drop model: The semi empirical formula, magic number; Shell Model: Ground state spin and parity of nuclei, Magnetic moments; Quadra pole moments, Introduction to Collective Model and Optical model. Nuclear decays: Theory of nuclear decays: alpha, beta, electron capture and gamma decays, allowed and forbidden transition, nuclear stability, beta stability valley. Nuclear reactions: Nuclear reactions: mechanisms, compound nucleus, kinematics and cross section, nuclear energy levels and their determination, Nuclear fission: Fission cross- section, chain reactions, 					

	magnetic field confinement, fusion reactors, hydrogen bomb	, Fusion in
Teaching and Learning Methods	Lectures, Tutorial discussion, e-based teaching-learning, Open Educational Resources, Assignments, Guided Learning	
Evaluation	In-course assessments	30%
	End of course examination	70%
Recommended References	 Kamal, A., Nuclear Physics, Springer, (2014) Kenneth, S. K., Introductory Nuclear Physics, John Wlley & Sons Norman, D. C., Models of the Atomic Nucleus, 2 Ed., Springer, (2 Cottingham, W. N. and Greenwood, D. A., An Introduction Physics, 2 Ed., Cambridge University Press, (2004) Samuel, S. M. W, Introductory Nuclear Physics, 2 Ed., John Wiley (1998) 	2010) to Nuclear

Course Code PHY405M3 Credit Value 03 Hourly Theory Practical Independent Learning Dreakdown 45 - 105 Objectives • Introduce the basic principle of generation and properties of Laser • Introduce the basic principle of generation and properties of Laser • Introduce different types of modern lasers and their applications in industry, material science, medicine, telecommunications and research Intended • Describe the fundamentals of a Laser • Explain the safety responsibilities involved in working with lasers • Analyse the laser-matter interaction • Evaluate the types of laser based on their generation techniques • Differentiate continuous and pulsed laser • Compare the structure and properties of different types of laser, and intended applications Laser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's coefficient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser Oscillation	Course Title	Laser Physics			
Credit Value 03 Hourly breakdown Theory Practical Independent Learning 0bjectives 45 - 105 Objectives • Introduce the basic principle of generation and properties of Laser • Introduce shigh power pulsed lasers from Q switched nanosecond lasers to femtosecond lasers Intended • Describe the fundamentals of a Laser • Explain the safety responsibilities involved in working with lasers Outcomes • Analyse the laser-matter interaction • Explain the safety responsibilities involved in working with lasers • Analyse the laser-matter interaction • Explain the safety responsibilities involved in working with lasers • Analyse the laser-matter interaction • Explain the safety responsibilities involved in working with lasers • Analyse the laser-matter interaction • Explain the safety responsibilities involved in working with lasers • Analyse the laser-matter interaction • Explain the safety responsibilities involved in working with lasers • Analyse the laser-matter interaction • Explain the safety responsibilities involved in working with lasers • Analyse the safety responsibilities involved in working with lasers • Analyse the laser-matter interaction • Compare the structure and properties of different types of laser, and intended applications					
Hourly breakdown Theory Practical Independent Learning Objectives 45 - 105 Objectives • Introduce the basic principle of generation and properties of Laser • Introduces high power pulsed lasers from Q switched nanosecond lasers to femtosecond lasers • Introduce different types of modern lasers and their applications in industry, material science, medicine, telecommunications and research Intended Learning • Describe the fundamentals of a Laser • Explain the safety responsibilities involved in working with lasers • Analyse the laser-matter interaction • Evaluate the types of laser based on their generation techniques • Differentiate continuous and pulsed laser • Compare the structure and properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's relationship and line broadening mechanisms: Interaction of matter: absorption, spontaneous and stimulated emission, Einstein's coefficient, Population inversion, Threshold population, Laser oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry -Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturation Modifying laser output: Laser modes, Quality factor (Q), Mode locking, Q-switching, Elec					
breakdown 45 - 105 Objectives • Introduce the basic principle of generation and properties of Laser • Introduces high power pulsed lasers from Q switched nanosecond lasers to femtosecond lasers • Introduce different types of modern lasers and their applications in industry, material science, medicine, telecommunications and research Intended • Describe the fundamentals of a Laser • Explain the safety responsibilities involved in working with lasers Outcomes • Describe the fundamentals of a Laser • Evaluate the types of laser based on their generation techniques • Differentiate continuous and pulsed laser • Compare the structure and properties of different types of laser, and intended applications Contents Laser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's cedificient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser oscillation in Fabry -Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturation Modifying laser output: Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect. Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser. Ruby laser, Gas laser - Co2 laser, He					
Objectives Introduce the basic principle of generation and properties of Laser Introduces high power pulsed lasers from Q switched nanosecond lasers to femtosecond lasers Introduce different types of modern lasers and their applications in industry, material science, medicine, telecommunications and research Intended Learning Describe the fundamentals of a Laser Explain the safety responsibilities involved in working with lasers Analyse the laser-matter interaction Explain the safety responsibilities involved in working with lasers Outcomes Unifferentiate continuous and pulsed laser Explain the structure and properties of different types of laser, and intended applications Contents Laser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's relationship and line broadening mechanisms: Interaction of matter: absorption, spontaneous and stimulated emission, Laser oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry –Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturation Modifying laser output: Laser Modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects:	-	-			Learning
 Introduces high power pulsed lasers from Q switched nanosecond lasers of femtosecond lasers Introduce different types of modern lasers and their applications in industry, material science, medicine, telecommunications and research Describe the fundamentals of a Laser Explain the safety responsibilities involved in working with lasers Analyse the laser-matter interaction Evaluate the types of laser based on their generation techniques Differentiate continuous and pulsed laser Compare the structure and properties of different types of laser, and intended applications Contents Laser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's relationship and line broadening mechanisms: Interaction of matter: absorption, spontaneous and stimulated emission, Einstein's coefficient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser Oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry –Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturation Modifying laser output: Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser ; Ruby laser, Gas laser - CO₂ laser, He-Ne Laser, Semiconductor laser, Nd-YAG Laser, Quantum well laser, Dye laser and Polymer laser Laser applications: Laser applications: Laser applications: Laser applications: Laser applications: L		-	rinciple of concration and		Lacor
Outcomes• Analyse the laser-matter interaction• Evaluate the types of laser based on their generation techniques• Differentiate continuous and pulsed laser• Compare the structure and properties of different types of laser, and intended applicationsContentsLaser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's coefficient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser Oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry -Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturationModifying laser output: Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser: Ruby laser, Gas laser - CO2 laser, He-Ne Laser, Semiconductor laser, Nd- YAG Laser applications: Laser applications: Laser applications: Laser application in Holography, Information technology, Communication, Printing, Scanning, Industry, Military, and Medical ResearchTeaching MethodsLectures, Assignments, Guided LearningMethodsIn-course assessments30%	-	 Introduces high power pulsed lasers from Q switched nanosecond lasers to femtosecond lasers Introduce different types of modern lasers and their applications in industry, material science, medicine, telecommunications and research 			
Outcomes• Analyse the laser-matter interaction • Evaluate the types of laser based on their generation techniques • Differentiate continuous and pulsed laser • Compare the structure and properties of different types of laser, and intended applicationsContentsLaser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's celationship and line broadening mechanisms: Interaction of matter: absorption, spontaneous and stimulated emission, Einstein's coefficient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser Oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry -Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturationModifying laser output: Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser: Ruby laser, Gas laser - CO2 laser, He-Ne Laser, Semiconductor laser, Nd- YAG Laser applications: Laser application in Holography, Information technology, Communication, Printing, Scanning, Industry, Military, and Medical ResearchTeaching and Learning MethodsIn-course assessments30%	Learning	• Explain the safety re	sponsibilities involved in v	vorking with la	asers
 Evaluate the types of laser based on their generation techniques Differentiate continuous and pulsed laser Compare the structure and properties of different types of laser, and intended applications Contents Laser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's relationship and line broadening mechanisms: Interaction of matter: absorption, spontaneous and stimulated emission, Einstein's coefficient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser Oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry -Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturation Modifying laser output: Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser: Ruby laser, Gas laser - CO₂ laser, He-Ne Laser, Semiconductor laser, Nd- YAG Laser. Quantum well laser, Dye laser and Polymer laser Laser Applications: Laser applications: Laser application in Holography, Information technology, Communication, Printing, Scanning, Industry, Military, and Medical Research Teaching and Learning Methods In-course assessments 	•		-		
• Compare the structure and properties of different types of laser, and intended applicationsContentsLaser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's relationship and line broadening mechanisms: Interaction of matter: absorption, spontaneous and stimulated emission, Einstein's coefficient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser Oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry -Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturationModifying laser output: Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser: Ruby laser, Gas laser - CO2 laser, He-Ne Laser, Semiconductor laser, Nd- YAG Laser. Quantum well laser, Dye laser and Polymer laser Laser application in Holography, Information technology, Communication, Printing, Scanning, Industry, Military, and Medical ResearchTeaching and Learning MethodsLectures assessments30%		•		ration techniq	ues
and intended applicationsContentsLaser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's relationship and line broadening mechanisms: 		Differentiate continu	ous and pulsed laser		
ContentsLaser: Introduction, properties, classes, and safety Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's relationship and line broadening mechanisms: Interaction of matter: absorption, spontaneous and stimulated emission, Einstein's coefficient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser Oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry -Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturationModifying laser output: Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser: Ruby laser, Gas laser - CO2 laser, He-Ne Laser, Semiconductor laser, Nd- YAG Laser. Quantum well laser, Dye laser and Polymer laser Laser applications: Laser application in Holography, Information technology, Communication, Printing, Scanning, Industry, Military, and Medical ResearchTeaching MethodsAnd Lectures, Assignments, Guided Learning MethodsIn-course assessments30%		Compare the structu	re and properties of differe	ent types of la	ser,
Monochromaticity, Coherence, Directionality, Brightness, Polarisation, Tunability, Principal components of laser, Laser classes and safety. Einstein's relationship and line broadening mechanisms: Interaction of matter: absorption, spontaneous and stimulated emission, Einstein's coefficient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser Oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry –Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain saturationModifying laser output: Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser: Ruby laser, Gas laser - CO2 laser, He-Ne Laser, Semiconductor laser, Nd- YAG Laser Quantum well laser, Dye laser and Polymer laser Laser Applications: Laser application in Holography, Information technology, Communication, Printing, Scanning, Industry, Military, and Medical ResearchTeaching and Leetures, Tutorial discussion, e-based teaching-learning, Open Educational Resources, Assignments, Guided Learning Methods30%		and intended applica	tions		
Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser: Ruby laser, Gas laser - CO2 laser, He-Ne Laser, Semiconductor laser, Nd- YAG Laser. Quantum well laser, Dye laser and Polymer laser Laser Applications: Laser application in Holography, Information technology, Communication, Printing, Scanning, Industry, Military, and Medical ResearchTeaching and Lectures, Tutorial discussion, e-based teaching-learning, Open Educational Resources, Assignments, Guided Learning Methods30%		 Tunability, Principal components of laser, Laser classes and safety. Einstein's relationship and line broadening mechanisms: Interaction of matter: absorption, spontaneous and stimulated emission, Einstein's coefficient and relationship, Line shape function, Natural, Collision and Doppler broadenings Laser Oscillation: Absorption / Gain coefficient, Population inversion, Threshold population, Laser oscillation in Fabry –Perot cavity and Properties of cavity resonator, Rate equation, pumping power, Three- and Four-level lasers and Gain 			
MethodsEvaluationIn-course assessments30%	0	 Laser modes, Quality factor (Q), Mode locking, Q-switching, Electro-optic effect: Kerr and Pockel effects, Magneto-optic effects: Faraday Effect and Acoustic-optic effect, Non-linear effects and Harmonic generation Types of Laser: Ruby laser, Gas laser - CO₂ laser, He-Ne Laser, Semiconductor laser, Nd-YAG Laser. Quantum well laser, Dye laser and Polymer laser Laser Applications: Laser application in Holography, Information technology, Communication, Printing, Scanning, Industry, Military, and Medical Research Lectures, Tutorial discussion, e-based teaching-learning, Open Educational 			
	_	,	. 0		
End of course examination 70%	Evaluation	In-course assessments 30%			30%
		End of course examinat	ion		70%

Recommended References	• William, T. S., Laser Fundamentals, 2 Ed., Cambridge University Press (2004)
	• Thyagarajan, K. and Ajoy G, Laser Fundamentals and Applications, 2 Ed., Springer US (2011)
	• Demtroder, W., Laser Spectroscopy, 4 Ed., Springer (2008).

Atomic and Molecular Sp	ectra		
PHY406M3			
03			
Theory	Practical	Independent Learning	
45	-	105	
 Describe main features Discuss the effect of ext spectra 	of atomic spectra. cernal electric and magnet	tic fields on the atomic	
 Explain the purpose of using approximation methods in solving Hamiltonian in Quantum mechanics Apply appropriate approximation methods to solve Hamiltonians in the study of atomic spectra Explain Stark effect, Zeeman effect and Paschen Back effect splitting of spectral lines and broadening spectral lines Discuss the features of atomic spectra observed experimentally. Compare the intensities of spectral lines of rotational and vibrational spectra Estimate bond length and rotational constant of rigid diatomic molecules Estimate rotational and centrifugal distortion constants of diatomic molecule in harmonic vibration-rotation 			
 perturbation theory, Time-independent degenerate perturbation theory, The variational method, Time-dependent perturbation theory and the interaction of atoms with radiation. Atomic Spectra: The spectra of Atomic hydrogen: Fine structure, Hyperfine structure; The spectra of Alkali metal atoms: Quantum defects, fine structure in alkali metal atoms; The spectrum of Helium: singlet and triplet states, exchange force; Many electron Atoms: Central field approximation, Atomic configuration and periodic table of elements, Coupling schemes. The interaction of atomic systems with external electric fields: the stark effect; The interaction of atomic systems with external magnetic fields: Landau levels, the strong field Zeeman effect, the Paschen-Back effect, Anomalous Zeeman effect; Broadening of Spectral lines: Broadening, due to local and non-local effects. Microwave Spectroscopy: The rotation of Molecules, Rotational spectra, Diatomic molecules, Polyatomic molecules, the diatomic vibrating-rotator, the vibrating diatomic molecules, the influence of 			
	 PHY406M3 03 Theory 45 Introduce the approxim Describe main features Discuss the effect of extrement of the spectra Explain the main feature Explain the purpose of Hamiltonian in Quantur Apply appropriate approximation guarter of the intensities of the spectral lines and broad Discuss the features of Compare the intensities of the intensitie	03 Theory Practical 45 - Introduce the approximation methods used in quebescribe main features of atomic spectra. Discuss the effect of external electric and magnet spectra Explain the main features of molecular spectra at explain the purpose of using approximation methods to so study of atomic spectra Apply appropriate approximation methods to so study of atomic spectra Explain Stark effect, Zeeman effect and Paschen I spectral lines and broadening spectral lines Discuss the features of atomic spectra observed of Compare the intensities of spectral lines of rotati spectra Estimate bond length and rotational constant of molecules Estimate rotational and centrifugal distortion comolecule in harmonic vibration-rotation Approximation Methods: Time-independent degener. The variational method, Time-dependent degener. The variation of atomic systems with etal atoms: structure; The spec	

Teaching and Learning	 Raman Spectroscopy: Pure rotational Raman spectra, Vibrati spectra, Polarization of light and the Raman effect, Structure de from Raman and Infra-red spectroscopy, Techniques and Instru Electronic spectra of molecules: Electronic spectra of diatomic Electronic structure of diatomic molecules, Electronic spectra of molecules, Techniques and Instrumentations. Spin resonance spectroscopy: Spin and applied field, Nuclear Resonance spectroscopy, Electron Spin Resonance spectroscopy. Lectures, Tutorial discussion, e-based teaching-learning, Open Resources, Assignments, Guided Learning 	termination mentations. c molecules, f polyatomic ar Magnetic pectroscopy,	
Methods Evaluation	In-course assessments 30%		
Recommended References	In course discissionents30 / 0End of course examination70%• Dmitry, B., Derek. F. K. and David, P. D, Atomic Physics: An Exploration through Problems and Solutions, Oxford University Press, (2008)• Svanberg, S., Atomic and Molecular Spectroscopy, Springer, (2004)• Banwell, C. N., Fundamentals of Molecular Spectroscopy, 3rd Edition, McGraw-Hill Book Company, (1972)• Brown, J. M., Molecular Spectroscopy, Oxford University Press, (1998)• Hollas, J. M., Modern Spectroscopy, 4 Ed., John Wiley & Sons, Ltd, (2004)• Anatoli V. A., Atomic Spectroscopy: Introduction to the Theory of Hyperfine Structure, Springer, (2005)		

Course Title	Particle Physics		
Course Code	PHY407M3		
Credit Value	03		
Hourly	Theory	Practical	Independent Learning
breakdown	45	-	105
Objectives	 Introduce the physics of fundamental constituents of matter and experimental techniques used in the production and detection of high energy particles Introduce the particle interactions and their properties based on fundamental force carriers 		
Intended Learning Outcomes	 Explain the historical development of particle physics Describe the working principle and applications of various types of particle accelerators Describe the Standard Model of particle physics Discuss the types of elementary particles Differentiate fermions and bosons Explain the characteristics of electromagnetic, strong, and weak interactions Interpret the particle interactions using Feynman diagram 		
Contents	 Interpret the particle interactions using Feynman diagram Introduction: The old "elementary" particles, particle accelerators and detectors, particles and anti-particles, pion, muon, neutrinos, strange particles; Classification of particles: baryons, mesons and leptons, quark model; Different types of interaction: strong, electromagnetic and weak; Mediators, the standard model. Conservation laws: Energy and momentum, angular momentum, Isospin, strangeness, parity, charge conjugation, time reversal and CPT theorem. Electromagnetic interaction:		

	Quark- quark interaction: The parton model, neutrino-nucleon collision and electron annihilation cross-section, deep inelastic electron-nucleon, nucleon scattering, electron-positron annihilation to hadrons, quark interaction and potential, quark confinement, Feynma representation of hadronic processes.	neutrino- the quark-	
Teaching and	Lectures, Tutorial discussion, e-based teaching-learning, Open I	Educational	
Learning	Resources, Assignments, Guided Learning		
Methods			
Evaluation	In-course assessments	30%	
	End of course examination	70%	
Recommended	• Donald H. Perkins, Introduction to high energy phys	sics, 4 Ed.,	
References	Cambridge University Press (2000).		
	• David Griffiths, Introduction to Elementary Particles, 2	Ed., Wiley	
	(2008).		
	Martin B.R., Shaw G., Particle Physics, 3 Ed., John Wiley & So	ons (2008)	

Course Title	Introduction to Nanoscie	ence and Nanotechnol	ogy
Course Code	PHY408M3		
Credit Value	03		
Hourly	Lectures	Practical	Independent Learning
breakdown	45	-	105
Objectives	 Introduce the physics of nanomaterial and nanodevices Provide knowledge of the working principle and application of various nanostructured devices 		
Intended Learning Outcomes	 devices Explain the basic conce Elucidate the principle Analyse the various and nanodevices 	inciple of nanostructure brication technologies pts of quantum effects i and application of Nanc s potential applicati	ed devices of nanomaterials and in nanoelectronic devices obiotechnologies ions of nanomaterials
Contents	and nanodevicesIntroduction:Definition of nanoscience, nanotechnology and nanomaterials, timeline and milestone of nanotechnology.Nanoscience:Quantum confinement vs dimensions:Quantum confinement vs dimensions:Quantum wells, wires and dots, density of states vs dimensionality, surface area of nanostructures interaction at the nanoscale,Effect of Nano-confinement on Properties:Thermal, Optical, Mechanical, Structural, Electrical, Chemical, Biological and Magnetic properties, tunable properties by nanoscale surface design and their potential applications. Nanomaterials:Nanomaterials:Polymers and semiconductors at nanoscale, Carbon based structures, Biomolecules:DNA, RNA, Nanocomposites:Metal-metal nanocomposites, polymer-metal nano-composites, Ceramic nanocomposites.Top-down and bottom-up approach of nanomaterial synthesis: Theory of film growth: gas impingement, adsorption, surface diffusion, surface coverage, epitaxial growth, Factors Influencing Thin Film Growth Thin film fabrication techniques: Langmuir-Blodgett film deposition, Electrodeposition, Self-assembly monolayer deposition. Synthesis of nanomaterialsCarbon based nanostructures:Semiconducting polymers, Graphite, Graphene, Carbon nanotube (CNT), single walled CNT, multiwall CNT, Properties of graphene and CNT, Device application of graphene and CNT, fullerene, electronics and Nanostructured devices: nanoscale MOSFETs, Quantum tunneling diodes, Single electron and single molecule transistors, Nanowire and thin film field effect transistors, Coulomb blockade, Kondo		

The set is see a	Nanobiosensors, drug targeting, drug delivery, nanosurgery biomedical applications	plitting, fuel nciples of n action, 7 and other	
Teaching and Learning	Lectures, Tutorial discussion, e-based teaching-learning, Open Educational Resources, Assignments, Guided Learning		
Methods			
Evaluation	In-Course Assessment	30 %	
	End-of-Course Examination	70 %	
Recommended References	 Edward, L. W., Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience, 2 Edi., WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim,(2006) Tero, T. H., The Physics of Nanoelectronics, 1 Ed., Oxford University Press, (2013) Karl, M. K., and Francis, D., Selected chapters on World Scientific Series on Carbon Nanoscience, World Scientific Publishing Co Pte Ltd, (2018) Gabor, L. H., Tibbals, H. F., Joydeep, D., and Moore, J. J., Introduction to Nanoscience and Nanotechnology, CRC Press, (2008) Frank, O., Owens and Poole, C., The Physics and Chemistry of Nanosolids, John Willey, (2008), George, H., Fundamentals of nanoelectronics, Pearson (2008) 		

Course Title	Energy and Enviro	onmental Physics	
Course Code	PHY409M3		
Credit Value	03		
Hourly breakdown	Lectures	Practical	Independent Learning
	45	-	105
Objectives	 Understand the core physical concepts related to Environment Comprehend the problems of energy demand and explain the possible contributions of renewable energy sources Introduce various types of energy resources available in the environment 		
Intended Learning Outcomes	 Describe the impacts of energy on environment Discuss specific environmental problems such as pollution, ozone depletion and global warming Distinguish the renewable and non-renewable energy sources Explain the physical basis for the utilization of various energy sources Make assessments on different energy technologies Estimate the efficiency of an energy conversion process in the environment 		
Contents	 environment Describe the different energy storage systems Introduction: Sustainable energy supply, energy and the environmental impact, Alternative energy sources Environment: Vertical structure of atmosphere, composition, greenhouse gases, atmospheric motion, solar spectrum, radiative equilibrium, effective temperature of earth, greenhouse effect and climate change Solar energy: Solar water heating, unsheltered heaters, sheltered heaters, system with separate storage, selective surfaces, evacuated collectors, other uses of solar heaters; air heaters, crop driers, space heat, space cooling, water desalination, Solar concentrators; photovoltaic generation, solar cells thermoelectric generation Wind energy: Turbine types and terms, Basic theory, Dynamic matching, stream tube theory, Characteristics of the wind, power extraction by a turbine, electrical and mechanical power generation Hydropower: Principles, assessing the resource for small installations, turbines, hydroelectric systems, hydraulic ram pump Wave Energy: Wave motion, wave energy and power, wave patterns and power extraction devices, Cause of tides, Enhancement of tides, tidal flow power and tidal range power Biofuels: Bio fuel classification, Biomass production for energy farming, direct combustion for heat, pyrolysis, thermo chemical processes; Alcoholic fermentation, anaerobic digestion for biogas, agrochemical fuel extraction. Nuclear energy: Nuclear fuel, Fusion and fission processes, nuclear reactors, reactor types, reactor design, nuclear radiation pollution and health effects. 		

	Importance of energy storage, Biological storage, chem heat storage, electrical storage, fuel cells, mechanical distribution of energy	U	
Teaching and Learning Methods / Activities	Lectures, Tutorial discussion, e-based teaching-learning, Open Educational Resources, Assignments, Guided Learning		
Evaluation	In-Course Assessment Examinations	30 %	
	Final Written Examination	70 %	
Recommended References	 Nelson V., Introduction to Renewable Energy, Energy and the Environment series, CRC Press, (2011) Volker Q., Understanding Renewable Energy Systems, Earthscan, (2005) Twidell, J., and Weir, T., Renewable energy resources, 2 Ed., Tayler and Francis, (2006) 		