Title of the Course Unit	Practical Physics II	
Course Code	PHY 201 G2	
Credit Value	02 (90 hours of practical)	
Objectives	Recall the basic laboratory skills	
	• Improve skills on experimental measurements in optics and electro	onics
	• Design and present content-oriented attractive poster	
Intended Learning	• Develop experimental skills to carry out laboratory practical in C	Optics and
Outcomes	Electronics	
	• Explain experimental findings in relation to existing theories	
	Conclude the experimental results	
	Disseminate knowledge through content-oriented poster	
Content/Description	Students must attend weekly practical sessions each of three hours duration	
	during whole academic year. Practicals will mostly be related to;	
	Optics: Biprism, Air Wedge, Newton's Ring, Single Slit Diffracti	on, Prism
	Spectrometer, Transmission Grating, Polarization by pile of plates.	
	Flastronies: Diodo characteristics Pactifiers Solar calls characterization	
	Transistor (BJT & FET) characteristics and amplifiers. Feedback circuits.	
	Oscillators, Operational amplifiers, Digital circuits	
	On completion of each weekly practical, students should submit lab report for	
	marking. Marks will be allocated to the readings taken and their laboratory report.	
	Poster Presentation: Students will be trained on preparing and presenting good	
	posters. They will be allowed to select topic which could explain basic principle	
	in any areas of Physics.	
	Posters will be evaluated under following categories: Typography,	Layout &
	Structure and Content of the poster as well as Interaction of the poster	r presenter
	with audience.	
Matheda / Activitian	Laboratory demonstration Weakly lab reports	
Methous / Activities	Poster presentation	
Evaluation	Continuous assessment on practical classes and lab reports	50 %
	Poster presentation during the course	10 %
	End of Drastical Examinations in Electronics and Ontics	10 /0
	End of Practical Examinations in Electronics and Optics	40 %

Recommended	• A Practical Guide to Experimental Geometrical Optics, Yuriy A. Garbovskiy
References	and Anatoliy V. Glushchenko, Cambridge University Press (2017), ISBN:
	9781316758465.
	• An Introduction to Practical Laboratory Optics, J. F. James, Cambridge U.
	Press 196 pp (2014), ISBN 978-1-107-68793-6.
	 Practical Physics and Electronics, C.C. Ouseph and U.J. Rao, Viswanathan Printers & Publishers Pvt Ltd (2009), ISBN-10: 818715621X, ISBN-13: 978- 8187156215.
	• Experiments and Demonstrations in Physics (second edition), Yaakov Kraftmakher, World Scientific (2014) 796 pages ISBN-10: 9789814434881.

Title of the Course Unit	Solid State Physics		
Course Code	PHY 202 G2		
Credit Value	02 (30 hours of lectures and tutorials)		
Objectives	Distinguish various types of atomic/molecular bonds		
	 Analyze different types of crystal structures 		
	• Explain thermal and electrical properties of matter		
	Classify insulators, semiconductors and conductors		
Intended Learning	Demonstrate different types of bonds		
Outcomes	Categorize different types of crystal structures		
	• Develop models for thermal and electrical properties of solids		
	Categorize different types of semiconductors		
	• Demonstrate the formation of p-n junctions		
Content /Description	Structure of matter: Nature of matter, charge to mass ratio of electr	ons, mass	
	spectrograph, determination of the electron charge, crystals, types o	f crystals,	
	crystal structures, unit cells, FCC, BCC and HCP structures, crystal d	efects, X-	
	ray diffraction.		
	Inter-atomic forces: Molecules and binding forces; Van der Was	als, ionic,	
	covalent and metallic bonds.		
	Thermal properties of solids: Monoatomic and diatomic lattice	vibration,	
	boundary conditions, phonon density of states, Classical theory of heat capacity		
	of solids, Einstein model, Debye model, thermal expansion.		
	Electrical properties: Drude free electron theory of metals, failures of Drude		
	model, Sommerfeld free electron theory, Density of states, Fermi-Dirac statistic		
	Fermi energy, the qualitative introduction to band theory of solids, classificat		
	of solids based on energy band diagram, introduction to semico	inductors,	
	intrinsic and extrinsic semiconductors, donors and acceptors, Ferm	1 level in	
	semiconductors, formation of p-in junctions.		
Teaching and Learning	Lectures and tutorial discussions		
Methods / Activities			
Evaluation	In-Course Assessment Examinations	30 %	
	End of Course Examination	70 %	
Recommended	• Introduction to Solid State Physics, C. Kittel (8th Edition), Wiley (2004)	
References	• Solid State Physics: Structure and Properties of Materials, M.A. W	ahab, (2 nd	
	Edition), Alpha Science International Ltd. (2005)		
	• Elementary Solid State Physics: Principles and Applications, M.A.	Omar, (4 th	
	edition), Addison-Wesley (1994)		

Title of the Course Unit	Optics and Special Relativity	
Course Code	PHY 203 G2	
Credit Value	02 (30 hours of lectures and tutorials)	
Objective/s	 Illustrate the basic principles of geometrical optics Explain the interference, diffraction and polarization of light Introduce the operating principle of lasers and its applications Explain the concepts of special relativity 	3
Intended Learning Outcomes	 Apply lens maker equations for thick and thin lenses Categorize the formation of various types of aberrations in le Understand the interference, diffraction and polarization of 1 Demonstrate Einstein postulates in special theory of relativit 	enses ight y
Contents	Ray Optics: Huygen's principle, spherical mirrors, thick and the combinations lens aberration even pieces telescope micross	in lenses, lens
	Interference: Wave nature of light, two beam interference on films, Michelson interferometer, Rayleigh refractometer, r interference, Fabry–Perot interferometer and its chroma power, interference filters.	non-reflecting multiple beam atic resolving
	resolving power of a prism, resolving power of te microscopes. Double slit diffraction, Michelson's stellar i multiple slit diffraction, diffraction and reflection gratin resolving power of gratings (Fresnel diffraction), Diffraction edge, diffraction at circular apertures and obstacles, the zone	lescopes and nterferometer, gs, chromatic on at a straight e plate.
	Polarization: Polarization by absorption, polarization by reflect and double refraction, properties of ordinary and extra- quarter wave and half wave plates, interference of polarized	ion, scattering ordinary rays, light.
	Introduction to Lasers: The fundamental physical processes variety of specific laser systems, optical laser gain, oscillation application of laser	es of lasers, on, resonators,
	Special theory of relativity: Invariance of the velocity of light is its experimental confirmation, Einstein's postulat transformation of space and time co-ordinates, time di contraction and their experimental confirmations, trans velocities, mass-velocity and mass-energy relationships, tran- momentum and energy, simple applications of special relative	n vacuum and tes, Lorentz lation, length sformation of nsformation of vity.
Teaching and Learning Methods / Activities	Lectures and tutorial discussions	
Evaluation	In-Course Assessment Examinations	30 %
	End of Course Examination	70 %

Recommended References	•	Fundamentals of Optics, F.A. Jenkins and H.E. White (4th edition),
		McGraw-Hill (1976)
	•	A Textbook of Optics, N. Subrahmanyam, B.V. Lal and M.N. Avadhanulu,
		S. Chand and Co. Ltd. (2006)
	•	Special Relativity, A.P.French, The MIT Introductory Physics Series,
		W.W. Norton and Company (1968)

Title of the Course Unit	Electromagnetism
Course Code	PHY 204 G2
Credit Value	02 (30 hours of lectures and tutorials)
Objective/s	 Recall basic mathematics required to formulate electromagnetic theory Apply Maxwell's equations in problems related to electro-statics and magneto-statics Make use of electromagnetic theory to solve problems in changing electromagnetic fields
Intended Learning Outcomes	 Describe various laws of electromagnetism including Coulomb's law, Gauss's law Utilize laws of electromagnetism to evaluate and predict the forces in an isolated multi-charge system Explain electromagnetic induction and Faraday's law Use Maxwell's equations to describe the time-varying electromagnetic fields
Contents	 Electrostatics: Coulomb's law, electric field (E) and potential (V), Gauss's law in vacuum, Laplace's and Poisson's equation, electric dipoles, uniqueness theorems, conducting sphere in electric field, the method of images: point charge near conducting sphere and line charge near conducting cylinder as examples, capacitance of parallel cylinders, work and energy in electrostatics, force on a charged conductor. Isotropic dielectrics, polarization charges, Gauss's law in dielectric, permittivity and susceptibility, properties of electric displacement (D) and electric field (E), boundary conditions at dielectric boundaries, relationship between electric field (E) and polarization (P), thin slab in electric field, dielectrics, Clausius-Mossotti equation.
	 Magnetostatics: Forces between current carrying elements, Gauss's law, dipoles, magnetic scalar potential, Ampère's law, magnetic vector potential. Magnetic media, magnetization, permeability and magnetic susceptibility, properties of magnetic field (B) and magnetic field intensity (H), boundary conditions at surfaces, methods of calculating B and H, magnetisable sphere in a uniform magnetic field, electromagnets, magnetic circuits, diamagnetism, paramagnetism, ferromagnetism, Curie-Weiss law, domains, hysteresis, permanent magnets.
	Time varying EM fields: Electromagnetic induction, Faraday's law, magnetic energy, self-inductance, inductance of a long solenoid, coaxial cylinders, parallel cylinders, mutual inductance, transformers, displacement current, Maxwell's equations, electromagnetic waves.

Teaching and Learning	Lectures and tutorial discussions	
Methods / Activities		
Evaluation	In-Course Assessment Examinations	30 %
	End of Course Examination	70 %
Recommended References	• Introduction to Electrodynamics, D. J. Griffiths (4 th edition), Addition-Wesley (2012)	
	• The Feynman Lectures on Physics, R.P. Feynman, R. B. Le Sands, Vol II, Addison-Wesley (1964)	ighton and M.
	• Electricity and Magnetism, W.J. Duffin (4th Edition), McGra	aw-Hill (1973)

Title of the Course Unit	Computational Physics	
Course Code	PHY 205 G2	
Credit Value	02 (20 hours of lectures and 30 hours of practical)	
Objective/s	• Outline the features of MATLAB	
	• Apply numerical methods in solving physics problems	
	• Design algorithms to simulate physics problems	
Intended Learning	• Illustrate the capabilities and limitations of computational	al methods in
Outcomes	solving homogeneous linear equations	
	• Explain the characteristics of various numerical methods	s exploited in
	solving physics problems.	
	• Analyze physical problems and their solutions on a computer	r.
	• Develop skills to write and develop simple simulation progra	ams
Contents	Introduction: Programming languages and algorithms, scien	tific software
	libraries	
	Numerical methods with programming exercises in MATLA	<mark>B</mark> :
	Root finding, solving linear systems by direct and iterat	tive methods,
	interpolation and extrapolation, differentiation and integration,	, curve fitting,
	matrices and eigenvalue problems, linear and nonlinear equ	ations, eigen-
	systems, solution of ordinary differential equations, element	tary statistics,
	Fourier transforms.	
	Computer simulation of the physics problems:	
	The motion of falling objects, two body problems, mini solar sys	tem, two body
	scattering, harmonic oscillator, electric circuit oscillator, electric	c field due to a
	charge distribution.	
Teaching and Learning	Lectures and tutorial discussions	
Methods / Activities		
Evaluation	Theory	
	In-Course Assessment Examinations	30%
	End of course examination	70 %
	Practical	
	Continuous assessment of practical reports	40 %
	End of course practical examinations	60 %
	Weightage:	
	Theory	75 %
	Practical	25 %

Recommended References	•	A Practical Introduction to Programming and Problem Solving, S. Attaway,
		MATLAB (3 rd edition), Elsevier Inc. (2013)
	•	A First Course in Computational Physics, P.L. Devries and J.E. Hasbun
		(2 nd edition), Jones and Barlett Publishers (2011)
	٠	A Guide to MATLAB for Beginners and Experienced Users, B.R. Hunt,
		R.L. Lipsman and J.M. Rosenberg, (3rd edition), Cambridge University
		Press (2014)