Physics Curriculum - Level 1G

Title of the Course Unit	Practical Physics I		
Course Code	PHY 101 G2		
Credit Value	02 (90 Hours of Practicals)		
Objectives	 Improve skills in carrying out basic measurements and writing practical reports 		
	 Assess different types of experimental errors and propose methods to minimize them 		
	 Design of experiments to extract maximum possible information 		
	Extraction of useful information from experimental data		
Intended Learning	Analyze different types of errors associated with scientific measurements		
Outcomes	 Develop experimental skills to carry out laboratory practicals 		
	Explain experimental findings in relation to existing theories		
	Conclude the experimental results		
Contents	Introduction of measuring instruments for mechanical, electrical an	d thermal	
	measurements		
	Basic measurements of physical quantities, estimating experimental errors and		
	ways to minimize them		
	Experiments related to Mechanics, Properties of Matter, Opt	ics, Basic	
	Electricity and Electronics		
Teaching and Learning	Laboratory demonstration		
Methods / Activities	ethods / Activities Handouts		
	Weekly lab reports		
Evaluation	Continuous assessment on practical classes and lab reports	20 %	
	Full reports	20 %	
	In-course assessment on basic measurements and error analysis	20 %	
	End of semester practical examination	40 %	
Recommended	Practical Physics (fourth edition), G.L. Squires, Cambridge University Press		
References	(2001)		
	• Experiments and Demonstrations in Physics (second edition), Yaakov	
	Kraftmakher, World Scientific (2014)		
	• The Uncertainty in Physical Measurements: An Introduction to Dat	a Analysis	
	in the Physics Laboratory, Paolo Fornasini, Springer (2008)		

Title of the Course Unit	Mechanics		
Course Code	PHY 102 G2		
Credit Value	02 (30 Hours of Lectures and Tutorials)		
Objectives	 Apply the principles of Newtonian mechanics to a wide variety of problems observed in nature Introduce the conservation of momentum and energy to solve particle collision problems Illustrate the particle motion in gravitational field 		
Intended Learning Outcomes	 Apply different forces and work-force problems applying Newton's laws Identify the different forms of energy and use conservation of energy to solve problems Define impulse, momentum and collisions Describe the fluid in motion and stationary Apply law of universal gravitation and explain the motion of planets and satellite 		
Contents	 Mechanics: Laws of motion, inertial and non-inertial frames of refere inertial mass, inertial forces, conservation of mass and momentum, w and kinetic energy, conservative forces and potential energy, conservation total energy, collision of particles. Motion in the centre of mass frame of reference, motion relative torotating frame of reference, torque and angular momentum, conservatio angular momentum, rotational motion of rigid bodies, moment of ine gyroscopic motion. 		
	 Fluid Mechanics: Fluid motion, Bernoulli's theorem, Poiseuille's la through a capillary tube, Stokes' law. Gravitational field: The law of universal gravitation, gravitational n the principle of equivalence, motion of planets and satellites, Keple atomic analogue of planetary motion, concept of reduced mass 	nass and	
Teaching and Learning Methods / Activities	Lectures and tutorial discussions Laboratory works Home-work assignments		
Evaluation	In-Course Assessment Examinations	30 %	
	End of Course Examination	70 %	
Recommended References	 An Introduction to Mechanics (2nd edition), Daniel Kleppner and Robert Kolenkow, Cambridge University Press (2013) Problems and Solutions in Introductory Mechanics, David J. Morin, Create- Space Independent Publishing Platform (2014) 		

Title of the Course Unit	f the Course Unit Vibrations, Waves and AC theory		
Course Code	PHY103 G2		
Credit Value	02 (30 Hours of Lectures and Tutorials)		
Objectives	 Distinguish different types of vibratory motions Describes vibrations, oscillations and waves Assess the performance of various combination of electrical components in <i>ac</i> circuits 		
Intended Learning Outcomes	 Solve different types of vibratory motions using the basic principles of physics Develop the mathematical formalism that describes vibrations, oscillations and waves Analyze different kinds of vibrations and waves Analyze circuits with various electrical components 		
Contents	Mechanical vibrations: Simple harmonic and damped harmonic oscillations, free and forced oscillations, mechanical impedance, resonance, coupled oscillations and normal modes.		
	Waves: Types of waves, Waves on a string, 1-D wave equation, running and standing waves, superposition of waves, phase and group velocities, beats, Doppler Effect.		
	Electrical oscillation: Alternating current and voltage, relative phases of voltages and currents, simple filter circuits, phase diagrams, superposition of oscillations, beats, amplitude modulation, electrical resonance in an LCR circuit, bandwidth power and quality factor.		
	Complex representation of oscillations : Representation of oscillation complex plane, complex <i>ac</i> current and voltage in resistors, capaci inductors and complex impedance.		
Teaching and Learning Methods / Activities	Lectures and tutorial discussions		
Evaluation	In-Course Assessment Examinations	30 %	
Recommended References	End of Course ExaminationThe Physics of Vibrations and Waves (6th edition), H.J. Pain, John	70 % Wiley &	
	 Sons, Ltd (2005), Print ISBN:9780470012956, Online ISBN:9780470 Vibrations and Waves, A.P. French, The MIT Introductory Physic CBS Publishers (2003) ISBN 0748744479, 9780748744473 Advanced AC Circuits and Electronics: Principles and Applica Michael Jacob, Herrick & Jacob series, Cengage Learning (200 076682330X, 9780766823303 	s Series, tions, J.	

Course Unit	Electricity and Electromagne	etic fields			
Course Code	PHY106 G2				
Credit Value	02				
Hourly break down	Theory	Practical	Independent Studies		
	30	-	70		
Objectives					
Develop problem s	solving skills in linear electric o	rcuits			
Apply basic laws o	f electromagnetic fields to soly	ve simple problems			
Intended Learning Ou	tcomes				
Recall the concept	of electric potential, current	and resistance			
• Discuss Ohm's law	, Kirchhoff laws, Thevenin's Th	neorem and Norton's theore	m		
Make use of the al	bove theorems to analyze resi	stive circuits			
• Apply the fundame	ental laws of the electric and r	magnetic field for solving sin	nple problems		
Contents					
• Electrical circuits:	Voltage, current and charge	in circuits, electrical resist	ance, Resistors in series a		
•	ctric circuits, Kirchhoff's Laws	• •			
theorem, Maximu	m power transfer theorem, W	heatstone's Bridge, Meter b	ridge and Potentiometer		
• Electric fields: Cou	llomb's Law, electric field, ele	ctrostatic potential, Gauss's	Law in electrostatics, elec		
	ce, Parallel, cylindrical and spl				
-	Force on moving charges, E				
-	ircuits, Faraday's Law, self-ind	ductance, energy in magne	to-statics, motion of charg		
	c and magnetic fields.				
-	g Methods / Activities				
	ssions, Self-learning, handout	s, e-resource			
Evaluation			1		
In-Course Assessment	Examinations		30 %		
End of Course Examin	ation		70 %		
Recommended Refer					
•	agnetism (Vol 1, 3 rd Ed.), B.I. B	•	rd University Press, 2013		
	5426ISBN-13: 9780199645428				
• Electromagnetism ISBN-13: 9780471	n (2 nd Ed.), I.S. Grant and W. L322450)	R. Phillips, Wiley-Blackwell,	1990 (ISBN 10: 04713224		
Course Title	Electronics				
Course Code	PHY107 G2				
Credit Value	02				
Hours brook down	Theory	Practical	Independent Studies		
Hourly break down	30		70		

Objectives

- Describe the fundamentals and properties of semiconductors
- Explain the working principles of semiconductor Diodes and Transistors and their applications
- Design simple analog and digital electronic circuits

Intended Learning Outcomes

- Recall the properties and classification of semiconductors
- Explain the working principle of a p-n junction diode and its applications
- Discuss the characteristics of Bipolar junction transistors (BJT) and Field Effect Transistors (FET)
- Design simple electronic circuits using BJT and FET
- Discuss the key characteristics of operational amplifiers and its application in analog computing
- Design simple combinational and sequential logic circuits using logic devices.

Contents

- **p-n junctions:** Semiconductors, Energy levels and bands, types and properties of semiconductors, Diodes and their characteristics, rectification, smoothing, voltage regulation using Zener diodes, light emitting diodes and photovoltaic devices.
- **Bipolar Junction Transistor (BJT):** Junction transistors and their characteristics, Biasing a BJT, Transistor as an amplifier, AC equivalent circuit of a BJT (h-model), Small signal AC analysis of common emitter, and common collector amplifiers
- Field Effect Transistors (FET): Junction field effect transistors (JFETs) and their characteristics, JFET amplifiers, DC and AC analysis of a common source, and source follower amplifiers, Introduction to MOSFETs.
- **Operational amplifier circuits**: Properties of an ideal and practical operational amplifiers, the 741 opamp, Application of op-amps to perform mathematical operations.
- Introduction to digital electronics: Basics of digital electronics, Boolean algebra, logic simplification, logic gates, combinational circuits, introduction to flip-flops, shift registers, counters, and sequential circuits.

Teaching and Learning Methods

Lectures, Self-learning, Tutorial discussions, Handouts, e-resource

Evaluation

In-Course Assessment Examinations

End of Course Examination

Recommended References

 Millman, J., Halkias, C.C. and Jit, S., Electronic Devices and Circuits (3rd Ed.), McGraw Hill Education (India) Pvt. Ltd, 2013 (ISBN 10: 0070700214, ISBN 13: 9780070700215)

30 % 70 %

- Roy Choudhury, D., and Jain, B., Linear Integrated Circuits, New Age Science Limited, 4th illustrated edition, 2010, ISBN 1906574715, 9781906574710
- Morris Mano, M., Digital Design, Prentice Hall; 3 Ed., 2001, ISBN-13: 978-0130621214